Таблица теплопроводности воздуха при различных температурах

March 10, 2019 просмотров: 3567


 Сама по себе теплопроводность воздуха, как и любых других газов и их смесей, не является постоянной величиной, а находится в зависимости от различных макропараметров.

теплопроводность
Множество факторов влияет на вычисление теплопроводности воздуха

Физика явления теплопередачи

Материя состоит из атомов и молекул. Эти частицы никогда не находятся в покое, то есть обладают кинетической энергией. Их подвижность обусловлена:

  • перемещениями;
  • вращениями;
  • колебаниями.

Тепловой энергией называют кинетическую энергию атомов и молекул. Её среднее значение в системе называют температурой. С точки зрения физики, все тела, окружающие нас, тёплые, так как неподвижность атомов в материи (температуру абсолютного ноля) можно описать теоретически, но недостижимо для практики.

молекулы
Движение воздуха обусловлена физическими параметрами

Перенос тепловой энергии из одной термодинамической системы в другую называют теплообменом. Он всегда происходит в одном направлении – от тела с более высокой температурой к телу с более низкой — и продолжается до тех пор, пока не будет достигнуто тепловое равновесие. При контакте сред с разной температурой остановить теплопередачу невозможно, её можно только замедлить. Сам теплообмен может осуществляться благодаря трём физическим явлениям:

  • теплопроводности;
  • конвекции;
  • излучению.
Теплопроводность — это передача тепла через тела с помощью столкновений молекул. Более подвижные частицы, контактируя с соседями, передают им часть энергии, таким образом создавая тепловой поток от нагретой части материала к холодной. Лучшие теплопроводники — металлы.

Конвекция требует текучей среды (жидкости или газа) и силы, действующей на среду, например, гравитации. Суть явления заключается в способности жидкости или газа менять плотность в связи с изменением температуры, благодаря чему под влиянием силы тяжести или другого внешнего воздействия происходит циркуляционное перемешивание. Таким образом тепло передаётся от горячих участков системы к холодным.

В этом видео вы узнаете о теплопроводности газов:

Излучение представляет собой способ передачи тепла, не нуждающийся в каком-либо контакте между источником тепла и нагреваемым объектом, как в случае с проводимостью или конвекцией.

Энергия передаётся через пространство с помощью электромагнитных волн со скоростью света. Хорошим примером в этом случае может быть нагрев Солнцем объектов на Земле с помощью излучения в видимом и инфракрасном диапазоне.

Коэффициент λ

Теплопроводность — явление, характерное для твёрдых тел, но оно свойственно также жидкостям и газам. Поскольку молекулы газов обладают большей свободой, чем молекулы твёрдых тел, у них значительно меньше шансов сталкиваться друг с другом и таким образом передавать тепло в среде. Благодаря этому газы обладают крайне низкой теплопроводностью.

Способность материалов к термическому переносу за счёт теплопроводности определяется коэффициентом λ, который равен количеству тепловой энергии, проходящей через единицу площади однородного материала единичной толщины при единичной разнице температур на сторонах образца. Коэффициент теплопроводности измеряется в Вт/м×K. Чем больше значение λ, тем хуже теплоизоляционные свойства материала. Величину, обратную λ, называют коэффициентом сопротивления теплопередаче.

Характерные для газов низкие показатели λ не означают, что толстый слой газа обеспечит лучшую изоляцию, чем такой же толщины газонаполненный пористый материал. Дело в том, что в больших объёмах газов создаются хорошие условия для конвекции, поэтому пористые материалы — гораздо лучшие изоляторы, чем однородные утеплители.

Теплопроводность воздуха

Воздух представляет собой смесь газов в различных пропорциях, каждый из которых обладает собственными теплофизическими характеристиками. Для удобства в расчётах вместо воздуха как смеси используют его модель как однородного газа. Основные газообразные компоненты воздуха:

  • кислород — 20,95% по объёму и 23,20% по весу;
  • азот — 78,09% и 75,47%, соответственно;
  • углекислый газ — 0,03% и 0,046%;
  • водород, аргон, криптон и другие газы в ничтожных количествах.
С повышением температуры кинетическая энергия молекул атмосферных газов растет, они начинают двигаться с большей скоростью, расстояние между ними и их свободный пробег увеличиваются. Этот процесс заметен как понижение плотности воздуха. Вместе с разрежением растёт и сопротивление теплопередаче.

Изменение теплопроводности смеси атмосферных газов — сложный процесс, зависящий от многих физических явлений, например, от влажности. Поэтому коэффициент теплопроводности воздуха при различных температурах — не расчётная величина, а усреднённый результат многочисленных экспериментов. Следует отметить, что для атмосферных колебаний давления изменениями λ можно пренебречь. Таблица коэффициентов теплопроводности воздуха в зависимости от значений температуры выглядит так:

Температура, Kλ, Вт/(м·град)ТλТλТλ
900,00842300,02043700,03156000,0469
1000,00932400,02123800,03236500,0497
1100,01022500,02213900,03307000,0524
1200,01112600,02294000,03387500,0549
1300,01202700,02384200,03528000,0573
1400,01292800,02464400,03668500,0596
1500,01382900,02544600,03809000,0620
1600,01473000,02624800,03949500,0643
1700,01553100,02695000,040710000,0667
1800,01643200,02775200,042010500,0691
1900,01723300,02855400,043311000,0715
2000,01803400,02925600,044511500,0739
2100,01883500,03005800,045712000,0763
2200,01963600,0308

Эти данные точны для сухого газообразного воздуха в состоянии покоя при атмосферном давлении 1 бар при идеальных пропорциях составляющих его газов. На практике отклонения от табличных значений могут быть вызваны самыми разнообразными факторами.

Например, наличие промышленных производств, выбрасывающих в атмосферу огромное количество химических и биологических микрочастиц (альдегиды, аммиак, оксиды, тяжёлые металлы), приводит к значительным загрязнениям атмосферы, а подобные примеси в больших количествах способны не только локально изменить теплопроводность воздуха, но и повлиять на глобальный теплообмен в атмосфере.